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VARIATIONS ON FOURIER WAVE THEORY 

RODNEY J. SOBEY 
Department of Civil Engineering, University of California at Berkeley, Berkeley, C A  94720, U.S.A. 

SUMMARY 
A review of the analytical and numerical background of Fourier wave theory establishes the commonality of 
existing formulations and identifies a number of analytical and numerical assumptions that are unnecessary. 
Some formulations in particular lack flexibility in excluding the possibility of Stokes' second definition of 
phase speed. A generalized formulation is introduced for comparative purposes and it is shown that 
published solutions differ only in the approach to the limit wave. Detailed consideration of truncation order 
confirms that it is the crucial parameter, especially at extreme wave heights. All formulations considered are 
shown to provide acceptable solutions for small to moderately extreme waves. 
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INTRODUCTION 

Developments in computer technology have had a considerable influence on steady progressive 
wave theory in recent decades. One approach has been the refinement of existing analytical 
theories to very high orders of approximation through application of symbolic manipulation 
software or computer algebra. Schwartzl and Cokelet' in particular have extended the classical 
Stokes deep water expansion to very high orders (typically over 100) and have been able to extend 
the theoretical range of validity into reasonably shallow water. Apart from loss of precision in 
shallow ~ a t e r , ~  this is not an approach that is particularly suitable for routine application in 
practice. 

Direct numerical solutions are an alternative approach, and the boundary integral equation 
method would appear to be the most promising technique. Unsteady wave problems, especially 
the approach to breaking, have received considerable a t t e n t i ~ n . ~ - ~  Steady progressive waves 
have been considered by Baker et aL7 and Lu et al.' The problem of imposing the free surface 
boundary conditions at a boundary which is itself part of the solution is a common difficulty in 
any formulation, but it appears to be an especially onerous problem for direct numerical methods. 
As yet also, this approach is not suitable for routine application in practice. 

A third approach, however, the Fourier approximation method, seems to offer just the right 
combination of analytical veracity, numerical robustness and computational efficiency. Required 
computer resources are consistent with present microcomputer technology, so that this approach 
is suitable for routine application in practice. 

There are however a number of apparently competing formulations of Fourier wave theoryg-' 
but no clear guidelines to assist in the selection of an appropriate formulation and in the adoption 
of a suitable numerical solution algorithm. Fourier wave theory is a hybrid analytical-numerical 
theory in which the solution is partially analytical in accommodating the field equation and the 
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kinematic bottom boundary condition but is completed numerically. Both the analytical and 
numerical details are important in achieving a complete solution and there is a surprising range of 
practices in existing formulations. It is the purpose of the present paper to compare and contrast 
the competing formulations, with particular attention being given to the problem formulation and 
to solution comparisons. This analysis provides an appropriate framework in which to evaluate 
the conflicting claims of the alternative formulations. 

STEADY WAVE THEORY 

Progressive waves of permanent form are steady in a frame of reference moving at the phase 
speed C. Accordingly, it is convenient to adopt a steady and moving x, z reference frame (Figure 1) 
that is located at the mean water level (MWL) and moves at speed C with the wave crest, rather 
than an unsteady and fixed X ,  2 reference frame. Assuming that the flow is incompressible and 
irrotational, the mathematical formulation may be presented in terms of the Euler equations, the 
velocity potential function or the streamfunction. Choosing the streamfunction +(x, z), the field 
equation representing mass and momentum conservation is the Laplace equation 

where the velocity components (u, w) are (at,b/az, -a$/ax). 
This field equation is subject to the following boundary conditions. 

(1) The bottom boundary condition, representing no flow through horizontal bed, is 

I++, -h)=O at z =  -h. (2) 
(2) The kinematic free surface boundary condition (KFSBC), representing no flow through the 

free surface, is 

where ~ ( x )  is the free surface and - Q is the constant volume flow rate per unit width under 
the steady wave. Q is positive and this flow is in the negative x-direction. 

(3) The dynamic free surface boundary condition (DFSBC), representing constant atmospheric 
pressure on the free surface, is 

W, v )  = - Q at z = vW, (3) 

where g is the gravitational acceleration and R the Bernoulli constant. 

c 
L 

f 

Figure 1. Definition sketch for steady wave theory 
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(4) The wave is periodic: 

w + L, 4 = $(x, 4, ( 5 )  
where L( = 2n/k) is the wave length and k is the wave number. 

The given parameters defining a steady wave solution are generally the wave height H, the water 
depth h, the wave period 7(=2n/o) and either the coflowing Eulerian current C ,  or the wave- 
averaged mass transport velocity or Stokes drift C,. The wave height is defined as 

H = do)  - v(L/2)3 (6 )  
and mass conservation requires an invariant MWL such that 

q(x)dx = 0. (7) 19' 
The speed C of the moving and steady reference frame is related to the fixed and unsteady reference 
frame by the dispersion relationship. When C, is known, the dispersion relationship is 

c= LIT= U+ CE, (8) 
where -U is the mean fluid speed at any z wholly within the fluid. The Stokes drift is then 
defined as 

(9) 
When Cs is known, equation (9) is the dispersion relationship and equation (8) is the definition 
equation for CE. 

C = L/T= Qlh i CP 

FOURIER APPROXIMATION WAVE THEORY 

Competing formulations of Fourier wave theory have much in common, and it is initially 
convenient to introduce what is essentially a superset of these formulations prior to a discussion of 
the specific variations. The solution for the streamfunction is represented by a truncated Fourier 
series 

yz sinhjk(h+z) 
o j = l  coshjkh 

$(x, z ) =  -U(h+z)+ 1 B j  cos jkx, 

where the B j  are the dimensionless Fourier coefficients, of which there are N. This representation 
of the streamfunction automatically satisfies the field equation, the kinematic bottom boundary 
condition and the periodic lateral boundary conditions. The Fourier coefficients are chosen 
numerically to satisfy the free surface boundary conditions, the finite truncation order N being the 
only necessary assumption of Fourier wave theory. 

The unknown variables in a Fourier wave solution are k, ti, C ,  or C,, Q, R, q, for m=O (l)M and 
B ,  of which there are M + N + 6. The q,,, = r](x,) are water surface nodes, where the x, = mn/kM are 
uniformly distributed in x from crest to trough. 

The problem formulation provides 2M + 6 implicit algebraic equations in these M + N + 6 
unknowns, each equation being cast in the form 

f;(k, & CE or Cs, Q, R ,  V m ,  Bj)=O. (1 1) 

(12) 

The equations define the wave height 

fi = r]o - Vu- H7 
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the mean water level 

the Eulerian current 

the Stokcs drift 

the kinematic free surface boundary condition (KFSBC) at each of the M + 1 free surface nodes 

f s  + 2m = )L(xm, tlm) + Q (16) 

and the dynamic free surface boundary condition (DFSBC) at each of the free surface nodes 

Note in particular the use of the trapezoidal rule in equation (13) for the MWL. This is an exact 
result for the continuous integral in equation (7), where q ( x )  is represented by a truncated Fourier 
series, as is implied by equation (10). 

The problem is uniquely defined for M = N and overspecified for M > N .  The solution of a set of 
2N + 6 simultaneous implicit algebraic equations in 2N + 6 unknowns is a familiar problem 
in numerical analysis for which successful algorithms are generally variations on the 
Newton-Raphson method. A set of 2M + 6 simultaneous implicit algebraic equations in 
M + N + 6 unknowns, where M > N, is an equally familiar problem in numerical analysis in the 
context of non-linear optimization. A solution is established by seeking a minimum value for an 
objective function of the M + N +6  unknowns. A familiar algorithm is the least-squares method 
where the objective function is the sum of squares of the left-hand sides of the 2M + 6 equations: 

O(k, U, CE or CS, Q ,  R ,  'lmy Bj) =f; +f: + . . . +f :M + 6 .  (18) 

Such an algorithm is equally successful for M = N ,  where the objective function would be expected 
to be zero. In practice, this involves little sacrifice in computational efficiency and none in solution 
precision and is accordingly a convenient choice of algorithm for the present purposes. 

The choice of numerical solution algorithm should not influence the solution, and the present 
computations have exclusively adopted the IMSL subroutine ZXSSQ which is a finite difference 
Levenberg--Marquardt algorithm with strict descent in double precision. This algorithm is 
mature, routinely successful and commonly available. Given that a solution exists, there are two 
potential difficulties with any optimization algorithm. The first is the difference in physical 
dimensions and relative magnitudes of the dependent variables. This has been minimized by 
redefining the variables and the implicit algebraic equations in dimensionless form, here in terms 
of m and g. A second difficulty is the potential existence of multiple solutions, especially the odd 
harmonics which are legitimate mathematical solutions of the gravity wave problem as formu- 
lated. This problem can be avoided, for example, by the choice of an initial estimate of the 
complete solution from Airy wave theory at a fraction of the given wave height. The wave height is 
then progressively increased towards the given wave height, with an initial estimate at each 
subsequent step being provided by a Taylor series expansion in H about the converged solution at 
the previous height step. A fraction sequence of0~01,0~02,005,0~1,0~2,0~5,1~0 has been employed, 
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with two steps normally sufficient in very deep water, four in transitional water and all seven in 
extremely shallow water. 

Whether a solution exists at all is a further potential difficulty, and there are two aspects here 
that require attention. The first is the truncation order N of the Fourier series. Steep crest and flat 
trough profiles typical of shallow water waves require many more Fourier terms than the more 
closely sinusoidal wave profiles in deep water. The theoretical slope discontinuity at the crest of 
limit waves would require an infinite truncation order and cannot be accommodated by Fourier 
wave theory; in practice, however, adequate solutions can be achieved very close to this limit. The 
second aspect is whether or not a solution does indeed exist, and here the problem formulation is 
remarkably prophetic and robust. For combinations of the given parameters that are not 
physically possible, convergence was consistently not achieved with the present formulation, 
despite the mathematical possibility of a minimum of the objective function. This is an especially 
encouraging aspect of the problem formulation and the numerical solution, considering the 
extreme multidimensionality of the problem and the considerable potential for spurious solutions. 

The forms of the free surface boundary conditions utilized above are the primitive forms, but 
equally appropriate forms may include the MWL constraint together with the truncated Fourier 
summation. The KFSBC, for example, may be written 

(19) - ii(h + ~ ( x ) )  + K ( x )  = - Q for all x,  

where 
g 2  sinh jk(h + q) 

K ( x ) = - ~  Bj cos j k x .  
w3 coshjkh 

Averaging by integration in x over a symmetric half-wave gives 
L/ 2 

- t i h + A  1 K(x)dx= -Q ,  
L o  

where the integral of the initial term is zero from the MWL constraint. This is now a global or 
weak form of the KFSBC since it enforces the boundary condition at all x only in an averaged 
sense. Equation (19), and equations (3) and (16), are strong forms of the boundary condition. Note 
however that Q may be eliminated between equations (19) and (20), giving 

L 

where K may be written for the right-hand side. This remains a strong form of the KFSBC. 
Similarly, the DFSBC may be written 

D ( x ) + g q ( x ) = R  for all x ,  (22) 

where 

sinh jk(h + q) . g2 cosh jk(h + q) 
sin j k x  ) +: ( U+ 7 1 j k B j  cosh jkh  a j  cosh jkh  

which is a strong form. Integration over x gives the weak form 

2 s y 2  D(x)dx = R ,  
L (23) 

where the MWL constraint has again been used. Eliminating R between these two equations gives 
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the alternative strong form 
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where D may be written for the right-hand side. 

DEAN FORMULATION 

The Dean formulation9~ l 2  imposes the Stokes first definition of phase speed and has a simpler 
definition of the Fourier sum, representing the streamfunction as 

2nlk N 
$(x, z )  = ( T- CE ) (h + z )  + 1 A j  sinhjk(h + z) cosjkx. 

j =  1 

Flexibility is lost in excluding the Stokes second definition of phase speed which would be 
necessary for wave computations in the near-shore zone and in wave flumes. The Fourier 
coefficients are 

g2Bj A -  
'-a3 coshjkh' 

which is dimensional and includes the hyperbolic cosine factor, both of which may lead to 
numerical precision problems. 

Unlike the generalized formulation outlined previously, the Dean formulation does not seek a 
simultaneous solution for all dependent variables. Instead, it adopts a four-step procedure which 
progressively solves for k and A j  at step I, qrn at step 11, Q and Cs at step I11 and finally R at step IV. 
At each step the remaining dependent variables are held constant at their most recent value. As for 
the generalized algorithm, an initial estimate of the solution is required, which is identified by the 
superscript zero. 

At step I, the unknowns are k' and the A:, which number N +  1 and are identified by the 
superscript I. The solution is based on the DFSBC, the f 6 + 2 m  equations, which can be written 

O(k', A:) =fg +fi + . . . + f + 2M. (28) 
As before, a least-squares solution algorithm is appropriate for M > N .  In the Dean tables,12 N 
ranges from 2 in deep water to 19 in shallow water. M is not explicitly given but appears to be 36 
(or 36n, where n is a positive integer) throughout. 

At step 11, the unknowns are the q!!,, which number M +  1 and are identified by the 
superscript 11. The solution is based on the KFSBC, the f5 + 2rn equations, which can be written 

f5 + 2m = $(xrn% v!!,; k', A:) + Qo. (29) 
In fact, q: is the sole unknown in each of these M + 1 equations, although the equations remain 
implicit. These equations may be solved separately by familiar algorithms such as interval halving, 
regula falsi or Newton-Raphson. 

At stepIII, Q"' is estimated from the weak form of the KFSBC, equation (20), which 
incorporates the MWL constraint, thef' equation, as 

Q"'= - K(k', &, A:), (30) 
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where the K integral is determined by Simpson's rule. C:' is available explicitly from equation (9) 
(or the f4 equation) as 

At this stage, wave height has not been imposed on the solution since Dean chose to impose R 

(32) 

rather than H .  Thef, equation is introduced at step 1V and may be written 

fl = t,#( Ro) - q t (  Ro) .- H .  
This is a single implicit algebraic equation in R which can be solved in an iterative manner as in 
step 11. An iteration cycle involves repetition of steps I, I1 and 111. 

In the generalized formulation, the single assumption was the truncation order N .  Dean has 
introduced two further assumptions. The first is Simpson's rule integration in step 111, whereas 
trapezoidal rule integration is exact in the context of truncated Fourier series. The second is the 
multistep algorithm, which does not provide a simultaneous solution for all dependent variables. 
While both of these assumptions are unnecessary, it does not appear that they have a detrimental 
influence on the algorithm. 

Perhaps the major difficulty with the multistep algorithm is identified at step IV, which 
implicitly assumes that H is.a single-valued function of R. For small to moderately high waves this 
is the case, but H is in fact a double-valued function of R for waves of near-limiting height.'V2 All of 
the common integral properties of steady waves are in fact dual-valued near the limiting wave 
height. Chaplinl' has shown that the Dean tabulated solutions12 do not follow this trend and 
concludes accordingly that the Dean limiting wave height solutions (case D) have little credibility. 
The tabulated Dean solutions for cases A, B and C for small to moderately steep waves are not 
disputed. 

It is emphasized in the Dean presentation9.12 that the KFSBC is exactly satisfied, but this is a 
misleading statement. The Fourier series representation for the streamfunction does exactly satisfy 
the field equation and the kinematic bottom boundary condition. In step I1 ofthe Dean algorithm, 
q$ is indeed chosen as the numerical solution of the implicit algebraic equation (29), but i t  
explicitly assumes that the balance of the problem formulation can be decoupled. In particular, R ,  
Q and thc A j  are assumed to be given parametcrs, equatcd to Qo from the initial solution estimate 
and k' and A )  from step I .  This is a substantially weaker statement that cannot be categorized as 
exact; it is a numerical approximation. Numerical errors will remain in the KFSBC, albeit small. 

Dalrymple13 introduced a variation on the Dean formulation, also adopted by Huang and 
Hudspeth,I4 that combines steps I and IV and avoids the final iteration on R to impose the wave 
height. Dalrymple adopts the alternative strong form of the DFSBC, equation (24), which can be 
writ ten 

(33) 

where the b integral is determined by Simpson's rule and the objective function at  step 1 is 
redefined as 

O(k', A:, j.l, j.2) = EDFSBC + E ~ ,  + eMWI. 

f6 + Z r n  = Nx,, k' ,  A: $J + ~4: - D(kl, A> v:), 

2 

which includes the wave height constraint (theI; equation) as the second term and the MWL 
constraint (thef, equation) evaluated by Simpson's rule as the final term; i., and i ,  are unknown 
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multipliers. Steps I1 and 111 remain unchanged, except for the addition to step 111 of the estimation 
of the Bernoulli constant from the weak form of the DFSBC, equation (23), as 

R"' = D(k', q;, A;), (35) 

where Simpson's rule is again used for the numerical integration. 
There are a number of inconsistencies in this modification to the Dean formulation. The MWL 

constraint is included twice in the revised objective function; it appears implicitly in the equa- 
tion (33) version of the DFSBC as well as explicitly as the last term in equation (34). In addition, 
Simpson's rule is used in the equation (33), (34) and (35) integrations as well as in step 111 for Q .  

The major uncertainty perhaps is the definition of the objective function itself. Normalized 
variables are apparently not used and the additionalf, andf2 equations are not squared, so that 
they are weighted differently to the DFSRC equations. Further, in seeking a minimum of the 
objective function, the DFSBC equations can contribute only positive residuals, whereas the f, 
andf, equations can contribute positive or negative residuals. Residuals of different sign to the 
associated 3. multipliers can potentially result in a spurious minimum of the objective function and 
a spurious steady wave solution. The 1. multipliers are additional dependent variables and there 
can be no expectation that a multidimensional iterative algorithm such as Newton-Raphson will 
yield solutions for 1, andf, and also A, andf, that will always have the same sign. 

Huang and Hudspeth14 acknowledge the weighting and sign problems in adopting a 
convergence criterion based on a dimensional total error 

ET=EDFSBC + 14 + IEMWLI~ (36) 
which differs from the equation (34) objective function on which iteration continues to be based. 
From a numerical viewpoint, it would appear that the Dalrymple and the Huang and Hudspeth 
variations on the Dean formulation introduce a number of additional uncertainties that may lead 
to spurious solutions. These uncertainties must be balanced against the numerical convenience of 
avoiding the step IV iteration for the wave height in the Dean formulation. On balance, the 
original Dean formulation must remain preferable for small to moderately extreme wave heights, 
despite the additional computational effort. 

CHAPLIN FORMULATION 

Chaplin" also adopts the simpler equation (25) form of the truncated Fourier series for the 
streamfunction, but without the CE term. Flexibility is again lost in excluding the Stokes second 
definition of phase speed and, further, in excluding a coflowing current (the C, term) from the 
Stokes first definition of phase speed. The I/coshjkh factor is also omitted. As with the Dean 
formulation, Chaplin does not seek a simultaneous solution for all dependent variables but adopts 
a three-step procedure that solves for q M  - and q M  at step I, Q and the A j  at step I1 and finally k 
and qo, q,, q2,  . . . , q M - ,  at step 111. Cs and R are computed upon completion of step 111. 

At step I, the unknowns are &-, and qh which are estimated from the wave height and MWL 
constraints. The wave height constraint (thef, equation) gives 

'I$ = &- H. (37) 
Simpson's rule integration is used in the MWL constraint (thef, equation) which, together with 
the wave height constraint, gives 
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At step 11, the unknowns are Q" and the A:, which number N + 1. The solution is based on the 
KFSBC, the f5 + 2m equation, which can be written 

There are M + 1 such equations. Chaplin chooses M to significantly exceed N and solves equa- 
tion (39)  by generalized Fourier analysis, a set of orthonormal functions being established by the 
Schmidt process. A least-squares algorithm would be equally appropriate. Chaplin chooses M 
as 200; N values range from 9 to 51. 

At step 111, the unknowns are k"' and q!', r f ,  . . . , V E - ~ ,  which number M. The solution is based 
on the DFSBC (thef,.,, equations) which can be written 

(40) 
There are M + 1 such equations. The problem is again overspecified and Chaplin chooses a least- 
squares algorithm. Upon completion of this numerical solution, Cs is available from the f4 

equation as 

111 111. All 111 111 111 I I All 
f 6 + 2 m = D ( ~ m , k  , f t m ,  j ) + g t l ~ ' - D ( k " ' , ' l o , ~ 1 , . . .  ~ V M - ~ ; V M - ~ , ~ ~ M ,  /I .  

Q"' 2n/k"' 
h T '  

C;l=- - -_ 

and R from the weak form of the DFSBC, Equation (23), as 

(42) 
This multistep sequence is an approximate inversion of the Dean formulation. Dean solves for 

the A j  from the DFSBC and then the q m  from the KFSBC, whereas Chaplin solves for the A, 
from the KFSBC and then the balance of the q, from the DFSBC; in both cases, k is determined 
from the DFSBC. The Chaplin sequence does involve additional computational effort since both 
the KFSBC and DFSBC steps are now simultaneous multidimensional problems, whereas the 
Dean KFSBC step is a sequence of parallel one-dimensional problems. Computational effort, 
however, is not a major concern since these solutions can be completed on a microcomputer. 
Otherwise the Chaplin formulation would appear to be preferable in its accommodation of wave 
height, espccially since it is apparently capable of extension to near-limit wave heights. 

Several of the criticisms of the Dean formulation persist, namely the adoption of Simpson's rule 
integration for the MWL constraint and the fact that the multistep sequence does not provide a 
simultaneous solution for all dependent variables. Again, these assumptions are unnecessary but 
do not appear to have a detrimental influence on the algorithm. 

I I1 kill 111 111 111 R"'=@(rth- 1, tlM9 A j ,  9 'to 9 ~ 1 9 .  . * v M - 2 ) .  

FENTON FORMULATION 

The Fenton formulation' 1 b  forms the basis of the generalized formulation outlined above. There 
are two minor differences. Fenton chooses to normalize the equations in terms of k and g rather 
than o and g. The present choice of o and g simplifies the coding of the problem formulation since 
k is a dependent variable, but is otherwise equivalent. In addition, M is chosen equal to N so that 
the problem is exactly specified and a Newton-Raphson-style algorithm can be used. Huang and 
Hudspeth14 dismiss the Fenton formulation on this point,citing 'large discrepancies between fifth- 
order results compared by Rienecker and Fenton' as only five points on the wave profile were 
used for convergence', but this is not an accurate reflection of the manuscript. The paper in fact 
reports solutions at truncation orders of 8, 16 and 32 for conditions defined by experiments of Le 
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Mehaute et a l l 6  These solutions are apparently almost identical and there are no solutions at 
truncation orders less than 8. 

The adoption of an adequate truncation order N is in fact a potential criticism of all 
formulations of Fourier wave theory, including that recommended by Huang and Hudspeth, and 
not just the Fenton formulation. In the generalized formulation, the only assumptions are the 
choice of N and M ,  where M 2 N. The success of a steady wave solution is then clearly dependent 
on N and M.17 Dean,' Dalrymple13 and Huang and Hudspeth14 do not record M values, beyond 
a statement to the effect that M is large. The Dean tables" have M = 36n, where n is an unrecorded 
positive integer. Chaplin'O apparently uses M = 200. Rienecker and Fenton' explicitly adopt 
M = N  and demonstrate increasing precision for N = 8 ,  16 and 32, the results being indi- 
stinguishable from the Cokelet tablesZ at N = 32 in shallow water and at N = 8 in deep water. That 
N rather than M is the crucial parameter has been confirmed in a rather more detailed analysis by 
Sobey,17 which has shown that the Fenton choice of M = N is appropriate provided that N is 
adequate for the particular steady wave solution. 

The significance of the truncation order follows directly from the nature of Fourier series 
approximations to periodic profiles. High waves in deep water have sharp crest profiles and flat 
trough profiles. High fidelity requires a larger truncation order, for which additional surface nodes 
( M  > N )  will not compensate. Limiting wave heights have a theoretical slope discontinuity at the 
crest, which demands an infinite truncation order. Such is not possible and no Fourier wave 
formulation can represent more than near-limit wave conditions, as is clearly acknowledged by 
Chaplin" and Rienecker and Fenton." 

COMPARISONS 

Fourier wave theory is a hybrid analytical-numerical theory and the sufficiency of both the 
analytical and numerical phases are relevant concerns. Existing formulations have rather more in 
common than is perhaps apparent from published descriptions. This is illustrated by a 
comparison of tabulated Dean solutions' for case 3C (w2h/y= 21c/100; d H / g  =0.036 57, C,=Q 
N = 1 7 ,  M = 3 6 )  and case 7C (w2h/g=2n/5;  wZH/y=058927, C,=O; N = 7 ,  M = 3 6 )  with the 
present generalized formulation, in Figures 2 and 3 respectively. The continuous lines are the 

0.03 k Markers are Dean (1974)  ' 
tabulated solution 

0 0.2 
(a) Water Surface Profile x/L 0:4 
. .  
. ) ?  

f Cres t  I 

.,-- -_ ,-.- --r , -- -_ -., 
0 0.05 0.1 L U  0.1 5 

(b) Horizontal V W i y  9 

Figurc 2. Wave profile and horizontal velocity predictions for Dean case 3C 
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Markers a re  Dean (1974) 
tabulated solution -1 
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(a) Water Surface Profile 

x/L 0:4 

- w 2z 
9 

- 1  ------A 
-0.2 0 0.2 0.4 0.6 

(b) Horizontal Velocity 9 

Figure 3 Wave profile and horizontal velocity predictions for Dean case 7C 

present solutions and the markers are the tabulated Dean solutions, parts (a) being the water 
surface profile and parts (b) the horizontal velocity profiles under the crest and the trough. The 
solutions are visually identical, with the single exception of the WS elevation listed in the Dean 
tables for case 7C at x / L =  130". The otherwise visually perfect agreement would indicate that the 
Dean table entry was a misprint. The table entry would appear to be appropriate for x / L =  140". 
This in fact may be a consistent misprint throughout the Dean tables, which should be apparent in 
all deep water solutions but not in shallow water solutions such as Figure 2(a) where the trough 
profile is long and flat. 

It follows from these and other similar comparisons for case A, B and C waves (respectively 25%, 
50% and 75% of an empirical breaking wave height) that the numerical approximations adopted 
by Dean do not compromise the utility of his solutions for small to moderate wave heights. Lack of 
flexibility, however, remains a concern, the Dean tables assuming the Stokes first definition 
of phase speed with CE=O and including neither finite CE nor the Stokes second definition of 
phase speed. 

Insufficient detail of alternative solutions has been published to enable completely satisfactory 
comparisons. D a l r ~ m p l e ' ~  includes little solution detail but does not indicate any disagreement 
with the Dean solutions. Chaplin" and Huang and HudspethI4 compare selected integral 
parameters with the Dean tables, especially Dean cases 3 ( 0 2 h / g  = 2n/100) and 7 ( 0 2 h / g  = 2n/5). As 
previously commented, the Chaplin solutions confirm the Dean solutions for cases, A, B and C but 
not for near-limit waves. Similarly, the selected integral parameters tabulated by Huang and 
Hudspeth differ from the Dean tables only for near-limit waves. 

Difficulties are encountered by all formulations as the limiting wave height is approached. This 
must be expected from a purely physical viewpoint and cannot be avoided. Near-limiting wave 
heights can be accommodated, but the sharp crest and flat trough profiles require a high 
truncation order. The slope discontinuity at the crest of limit waves requires an infinite truncation 
order, and a finite truncation order will encounter the Gibbs phenomenon and solution 
oscillations. These oscillations can be numerically damped to achieve numerical convergence, but 
this potentially compromises the physics of the problem formulation, especially where N is small. 
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0.28 - 

0.27 - 

0.26 - 

For wave heights above the limit waves, the problem formulation is sufficiently robust that no 
solution can be achieved; at least this is the experience with the generalized formulation. 

Differences between simultaneous and multistep numerical algorithms might be expected for 
near-limit waves because of the rapidly changing nature of the solution. In principle, simultaneous 
solutions should cope better here, but even this is compromised by the higher order (approxi- 
mately 2M) of simultaneous algorithms compared with multistep algorithms (approximately M 
for the separate KFSBC and DFSBC steps). There is little potential value, however, in pursuing 
this question since it is clear that Fourier wave theory, regardless of the formulation, is only 
moderately appropriate for near-limit waves. 

This is well illustrated by the approach to the limiting wave height for Dean cases 3 and 7 (where 
C ,  = 0), which have been specifically considered by Chaplin and by Huang and Hudspeth. 
Figure 4 includes normalized phase speed ( o C / g )  solutions for Dean case 3 by Dean," by 
Chaplin" and by Huang and Hud~peth . '~  Also shown in Figure 4 are computed solutions from 
the present generalized algorithm at N = M = 27. The point clusters marked A, B and C identify 
Dean cases 3A, 3B and 3C respectively and further confirm the commonality of all formulations 
for small to moderately large wave heights. The solutions differ, however, in the approach to the 
limit wave height. The Dean solution for case 4D is very different to the other solutions, as 
previously noted by Chaplin. The inset magnifies the detail at the approach to the limit wave and 
adds further solutions from the present generalized algorithm for N = M =  18. The variation is 
considerable and it is clear that these differences are attributable directly to the numerical 
algorithm and not to the physical problem. Tabulated solutions by Cokelet2 provide useful 
qualitative comparisons but are not sufficiently close to the same co2h/g conditions to provide 
useful quantitative comparisons. They do however illustrate the well-known maximum before the 
limit wave height, which is an intrinsic property of most integral wave parameters. This maximum 
is reproduced by the Chaplin solution at N = 49, by the Huang and Hudspeth solution at N = 27 
and by the present algorithm at N = 27 but not at N = 18. It would appear, however, that it is not 
captured by the Dean algorithm. The direct dependence on truncation order was anticipated and 
is quite explicit in the inset. Both the location and the magnitude of the peak are dependent on the 
truncation order. The differences are not large, but high fidelity demands a high truncation order 
for near-limit waves. Rienecker and Fenton' report direct comparisons with the Cokelet tables 
and also note the significance of the truncation order. 

x N=27 

B S  

Am 0.3 

Chaplin * * * -  
Huong & Hudspeth ca 

0.643' ' ' ' ' 0.d4S 
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Different measures of solution applicability appear to give conflicting guidance for such near- 
limit waves. On the basis of KFSBC errors, Huang and Hudspeth argue that ‘both the Chaplin 
and Dean solutions are less reliable in steep water wave regions’ than their own solutions. In the 
case of the Dean solutions, this is indeed supported by Figure 4, but the same figure indicates a 
clear preference for the Chaplin solution. Further, comparison of the multistep Huang and 
Hudspeth solution at N = 27 with the present simultaneous solution also at N = 27 indicates that 
the multistep algorithm copes less well for near-limit waves. 

Similar trends are apparent in Figure 5, which shows Dean solutions, Chaplin solutions at 
N=39, Huang and Hudspeth solutions at N=13 and solutions from the present algorithm 
at N = 18. The Huang and Hudspeth solutions at N = 13 do not capture the solution maximum, 
the truncation order apparently being too low. The present algorithm at N = 18 and the Chaplin 
solutions at N = 39 are very close. The behaviour of the present algorithm on close approach to the 
limit wave is quite instructive. There is a second curvature reversal and the curve goes high, above 
the apparent trend of the Dean solutions. A similar trend is observed in the Huang and Hudspeth 
solutions in Figure 4. These would appear to be spurious solutions, contaminated by the Gibbs 
phenomenon in an attempt to represent a very steep profile with insufficient Fourier terms. For 
still higher waves, convergence was not achieved. This spurious behaviour is well illustrated in the 
response of the Fourier coefficients to increasing wave height, as seen in Figure 6. The Fourier 
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Figure 5. Phase speed dependence on wave height for Dean case 7 
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Figure 7. Fourier coefficient dependence on truncation order for Dean case 7A 

coefficients for Dean cases 7A, 7B and 7C differ little from those of Dean.I2 The increasing 
steepness of the crest profile requires increasing contributions from the higher harmonics, leading 
inevitably to Gibbs phenomenon oscillations of the very high harmonics' and an apparent 
breakdown in the solution fidelity, represented by the eight consecutive negative Fourier 
coefficients. 

For smaller waves, there is perhaps some indication from the sign reversals in the case 7A and 
7B Fourier coefficients in Figure 6 that the truncation order for these solutions may be too large. 
This may conceivably arise when the higher-order dimensionless Fourier coefficients are so small 
that they exceed (underflow) the finite limits of machine resolution. This was further investigated 
by computing solutions from the present algorithm at increasing truncation orders from N = 1 to 
N = 18, where M was always chosen equal to N .  The computed Fourier coefficients are presented 
in Figure 7, together with the equivalent Dean" coefficients for N = 3 and M = 36n. The 
individual Fourier coefficients f o r j r  N are very stable and agree closely with the Dean solution at 
the same truncation order. It follows that the sign reversals here are not a spurious computational 
effect. This behaviour, however, is certainly the exception rather than the rule, the general trend 
being for positive and monotonically decreasing coefficients. Case 7B has similar sign reversal to 
cases 6B and 7B in the Dean tables. The Fourier coefficients for the N = M  = 27 solutions for Dean 
case 3 from the present algorithm remain well behaved, monotonically decreasing and positive 
right up to case 3D. The Figure 4 solution remained similarly well behaved. 

CONCLUSIONS 

Alternative formulations of Fourier wave theory by Dean," by Dalrymple13 and Huang and 
Hudspeth,14 by Chaplin," by Rienecker and Fenton" and Fenton,lS together with a generalized 
formulation introduced in the present paper, provide almost identical solutions for small to 
moderate wave heights over the entire practical range of water depths. The Dean, Dalrymple, 
Chaplin, and Huang and Hudspeth formulations adopt some numerical approximations such as 
Simpson's rule integration and a multistep solution algorithm that are not entirely necessary but 
do not seem to compromise the adequacy of their solutions for non-extreme wave heights. These 
same formulations, however, lack flexibility in not accommodating the Stokes second definition of 
phase speed. Both definitions of phase speed together with non-zero values of the mean Eulerian 
current or the Stokes drift are included in the Rienecker and Fenton formulation and the present 
generalization of that formulation. 
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Computed solutions are in rather less agreement at the approach to the limit wave. In principle, 
and in practice, no Fourier wave theory (with a finite truncation order) can represent the 
theoretical slope discontinuity at the crest of a limit wave. It is also difficult but not impossible to 
capture the maximum value of common integral parameters with increasing wave height. The 
maximum is located at close approach to the limit wave, but this solution characteristic can be 
filtered from the numerical solution if the adopted truncation order is not sufficiently high. The 
Dean algorithm is dual-valued for near-limit waves, and the tabulated Dean case D solutions are 
potentially spurious. The other algorithms appear to have the capability of predicting this feature, 
provided the truncation order is sufficiently high, although there is some indication that multistep 
algorithms have somewhat more difficulty. 

It is clear from the generalized formulation that the only necessary assumptions in Fourier wave 
theory are the truncation order N and the number of surface nodes M ,  which must equal or exceed 
N .  It is not surprising then that the truncation order is the crucial parameter in establishing a 
successful solution. Of those alternative formulations considered, most have the potential to yield 
acceptable mathematical solutions for steady non-linear progressive waves, provided the trunc- 
ation order is appropriate. The exception is the Dean formulation for very high waves. 
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